Joint Estimation of the Electric Vehicle Power Battery State of Charge Based on the Least Squares Method and the Kalman Filter Algorithm

نویسندگان

  • Xiangwei Guo
  • Longyun Kang
  • Yuan Yao
  • Zhizhen Huang
  • Wenbiao Li
  • Sheng S. Zhang
چکیده

An estimation of the power battery state of charge (SOC) is related to the energy management, the battery cycle life and the use cost of electric vehicles. When a lithium‐ion power battery is used in an electric vehicle, the SOC displays a very strong time‐dependent nonlinearity under the influence of random factors, such as the working conditions and the environment. Hence, research on estimating the SOC of a power battery for an electric vehicle is of great theoretical significance and application value. In this paper, according to the dynamic response of the power battery terminal voltage during a discharging process, the second‐order RC circuit is first used as the equivalent model of the power battery. Subsequently, on the basis of this model, the least squares method (LS) with a forgetting factor and the adaptive unscented Kalman filter (AUKF) algorithm are used jointly in the estimation of the power battery SOC. Simulation experiments show that the joint estimation algorithm proposed in this paper has higher precision and convergence of the initial value error than a single AUKF algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study Based on the Least Square Parameter Identification Method for State of Charge Estimation of a LiFePO4 Battery Pack Using Three Model-Based Algorithms for Electric Vehicles

Battery energy storage management for electric vehicles (EV) and hybrid EV is the most critical and enabling technology since the dawn of electric vehicle commercialization. A battery system is a complex electrochemical phenomenon whose performance degrades with age and the existence of varying material design. Moreover, it is very tedious and computationally very complex to monitor and control...

متن کامل

Optimal power management of fuel cell hybrid vehicles

This paper presents a control strategy developed for optimizing the power flow in a Fuel Cell Hybrid Vehicle structure. This method implements an on-line power management based on the optimal fuzzy controller between dual power sources that consist of a battery bank and a Fuel Cell (FC). The power management strategy in the hybrid control structure is crucial for balancing between efficiency an...

متن کامل

State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter

Accurate state of charge (SOC) estimation is of great significance for a lithium-ion battery to ensure its safe operation and to prevent it from over-charging or over-discharging. However, it is difficult to get an accurate value of SOC since it is an inner sate of a battery cell, which cannot be directly measured. This paper presents an Adaptive Cubature Kalman filter (ACKF)-based SOC estimati...

متن کامل

A Novel State of Charge Estimation Algorithm for Lithium-Ion Battery Packs of Electric Vehicles

This paper focuses on state of charge (SOC) estimation for the battery packs of electric vehicles (EVs). By modeling a battery based on the equivalent circuit model (ECM), the adaptive extended Kalman filter (AEKF) method can be applied to estimate the battery cell SOC. By adaptively setting different weighed coefficients, a battery pack SOC estimation algorithm is established based on the sing...

متن کامل

Multi-level Energy Management Strategy for Fuel Cell Vehicle Based on Battery Combined Efficiency and Identification of Vehicle Operation State

The design of energy management strategy is one of the main challenges in the development of fuel cell electric vehicles. The proposed strategy should be well responsive to provide demanded power of fuel cell vehicle for motion, acceleration, and different driving conditions, resulting in reduced fuel consumption, increased lifetime of power sources and increased overall fuel efficiency. The pu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016